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HOMOGENIZATION OF THE PROCESS OF PHASE TRANSITIONS

IN MULTIDIMENSIONAL HETEROGENEOUS PERIODIC MEDIA

UDC 517.957I. A. Kaliev and G. S. Sabitova1

The homogenization of the Stefan multidimensional problem is carried out in the case where
the medium is a composite consisting of two different substances with an ε-periodic structure.
The averaged problem is deduced by asymptotic methods. It is shown that its solution is the
limit of solutions of ε-problems.

The majority of composite materials have a periodic structure or a structure close to it and, therefore, in
the present work the processes of phase transitions in multidimensional heterogeneous media with a periodic
structure are studied. By the medium with a periodic structure, a medium composed of a periodically
repeating element (cell) is understood. In this study, the homogenization of the Stefan multidimensional
problem for a composite material is considered. Different approaches to the solution of this problem are
proposed in [1].

Figure 1 shows one of the possible structures. The filled region Aε is occupied by the substance A,
and the light region Bε by the substance B. The periodic cell is a cube (0, ε)k in Rk with the face ε (k is
the dimensionality of spatial variables). The interface of the regions Aε and Bε is assumed to be a smooth
function of the class C l (l > 2). It is also assumed that the motion is absent and the densities of the substances
A and B do not vary as the temperature changes. Under the action of a thermal field, the substances A and
B of a composite material can undergo phase transformations with their melting point in accordance with
the equation of state.

The phase transitions in each substance are described by the Stefan problem. We consider that in the
regions Aε and Bε, the temperature θε(x, t) satisfies, in terms of the distribution theory, the equations

∂UA(θε(x, t))
∂t

−∆θε(x, t) = f(x, t), x = (x1, . . . , xk) ∈ Aε,

∂UB(θε(x, t))
∂t

−∆θε(x, t) = f(x, t), x = (x1, . . . , xk) ∈ Bε.

(1)

Here x is the spatial variables and t is the time; the subscript ε refers to the size of the periodic cell.
The qualitative dependence of the specific internal energies UA and UB on the temperature θ is shown

in Fig. 2 (solid curves). The function UA(θ) undergoes a discontinuity of the first kind for θ = θ∗A, where θ∗A
is the melting point of the substance A; UA(θ∗A + 0)− UA(θ∗A − 0) = LA > 0 is the latent heat of melting of
the substance A. The function UB(θ) undergoes a discontinuity of the first kind for θ = θ∗B, where θ∗B is the
melting point of the substance B; UB(θ∗B + 0) − UB(θ∗B − 0) = LB > 0 is the latent heat of melting of the
substance B. Outside of the point of discontinuity, UA(θ) and UB(θ) are assumed to be increasing smooth
functions:
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UA ∈ C2[0, θ∗A], UA ∈ C2[θ∗A,+∞),
dUA(θ)
dθ

> c0 for θ 6= θ∗A,

UB ∈ C2[0, θ∗B], UB ∈ C2[θ∗B,+∞),
dUB(θ)
dθ

> c0 for θ 6= θ∗B.

Here c0 = const > 0. The function inverse to UA(θ) is denoted by θA [θ = θA(UA)], and the function inverse
to UB(θ) is denoted by θB [θ = θB(UB)]. We note that θA and θB are uniquely determined functions.

The following continuity conditions for the temperature and heat flux are satisfied on the surface of
contact of the substances A and B:

[θε] = 0,
[∂θε
∂n

]
= 0. (2)

Here n is the normal to the surface of contact; the square brackets denote the jump in the function in passing
through the surface of contact.

We introduce the function

u(x, θ) =

{
UA(θ), x ∈ Aε,

UB(θ), x ∈ Bε.
Using the periodic structure of the medium, we can consider that

u(x, θ) = U(x/ε, θ) = U(ξ, θ),

where ξ = x/ε, U(ξ, θ) is a one-periodic function in ξi [ξi = xi/ε (i = 1, . . . , k)]. Hereinafter, the term
T -periodicity means the periodicity with period T in the indicated variables.

Let Ω ⊂ Rk be the limited region with a smooth boundary S of the class C l (l > 2). Relations (1) and
(2) in the region ΩT = Ω× (0, T ) are equivalent to the equation

∂U(x/ε, θε(x, t))
∂t

−∆θε(x, t) = f(x, t), (x, t) ∈ ΩT (3)

satisfied in terms of the distribution theory. At the boundary S of the region Ω, the temperature

θε(x, t) = θS(x, t), (x, t) ∈ ST = S × (0, T ) (4)

is set, and the function Uε(x)

U
∣∣∣
t=0

= Uε(x) (x ∈ Ω) (5)

is defined at the initial moment of time. Using the given function Uε(x), one can find uniquely the initial
temperature

θε

∣∣∣
t=0

=

{
θA(Uε(x)), x ∈ Aε ∩ Ω,

θB(Uε(x)), x ∈ Bε ∩ Ω.
(6)
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Definition 1. The pair of functions {θε(x, t), uε(x, t)} is called the generalized solution of the ε-problem
(3)–(5) if:

1) θε ∈W 1,0
2 (ΩT ) and uε(x, t) ∈ U(x/ε, θε(x, t));

2) the boundary condition (4) is satisfied;
3) for all the functions ϕ(x, t) from W 1,1

2 (ΩT ) subject to the conditions ϕ
∣∣∣
t=T

= 0 and ϕ
∣∣∣
ST

= 0, the

integral identity ∫
ΩT

uε
∂ϕ

∂t
dx dt−

∫
ΩT

∇θε∇ϕdx dt+
∫

ΩT

fϕ dx dt+
∫
Ω

Uε(x)ϕ(x, 0) dx = 0

is satisfied.
For convenience of the formulation of the result, we introduce the function θΓε(x, t) which is defined

in Ω̄× [0, T ] and coincides with θS(x, t) from (4) for (x, t) ∈ ST and with θε

∣∣∣
t=0

from (6) for t = 0.

Theorem 1. Let θΓε(x, 0) ∈ L∞(Ω) ∩W 1
2 (Ω), θΓε ∈ L∞(ΩT ), DtθΓε ∈ W

1,1
2 (ΩT ), and f ∈ L2(ΩT ).

Then, there exists a unique limited generalized solution of problem (3)–(5)

θε ∈W 1,1
2 (ΩT ) ∩ L∞(0, T ;W 1

2 (Ω)) ∩ L∞(ΩT ), uε ∈ L∞(ΩT ),

and the estimates on θε and uε in the indicated classes being uniform in ε.
The proof of Theorem 1 is similar to that of the corresponding theorem for the generalized solution of

the Stefan problem [2, pp. 32–35]. We note also that the existence of the generalized solution of a (3)–(5)-type
problem is proved in [3].

We study the behavior of the solution θε(x, t) as ε→ 0. Following to the general scheme [4], we search
for an asymptotic solution of problem (3)–(5) in the form

θε(x, t) = θ0(x, t, ξ) + εθ1(x, t, ξ) + ε2θ2(x, t, ξ) + . . . ,
(7)

U(ξ, θε(x, t)) = U(ξ, θ0(x, t, ξ)) + ε
∂U(ξ, θ0(x, t, ξ))

∂θ
θ1(x, t, ξ) + . . . ,

where ξ = x/ε and θj(x, t, ξ) are functions which are one-periodic in ξ. Substituting (7) into (3), we have

− 1
ε2

(∆ξθ0(x, t, ξ))− 1
ε

( k∑
i=1

( ∂2θ0

∂xi ∂ξi
+

∂2θ0

∂ξi ∂xi

)
+ ∆ξθ1(x, t, ξ)

)
+
∂U(ξ, θ0(x, t, ξ))

∂t

−∆xθ0(x, t, ξ)−∆ξθ2(x, t, ξ)−
k∑
i=1

( ∂2θ1

∂xi ∂ξi
+

∂2θ1

∂ξi ∂xi

)
= f(x, t) + εr(x, t, ξ). (8)

Equating terms of the order ε−2 to zero in (8), we obtain

∆ξθ0(x, t, ξ) = 0, ξ ∈ Q1 = (0, 1)k, (9)

where Q1 is a unit cube in Rk. We multiply (9) by θ0(x, t, ξ) and integrate over ξ on the cube Q1:

0 =
∫
Q1

θ0∆ξθ0 dξ1 . . . dξk =
∫
Q1

(divξ (θ0∇ξθ0)−|∇ξθ0|2) dξ1 . . . dξk =
∫
∂Q1

θ0(∇ξθ0 ·n) ds−
∫
Q1

|∇ξθ0|2 dξ1 . . . dξk.

The first term on the right side is equal to zero by virtue of the periodicity of the function θ0 in the variables
ξ. Therefore, |∇ξθ0| = 0. Hence,

θ0 = θ0(x, t), (10)

i.e., θ0 does not depend on the variable ξ.
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Equating terms of the order ε−1 to zero in (8), with allowance for (10) we obtain ∆ξθ1(x, t, ξ) = 0
(ξ∈Q1), where θ1(x, t, ξ) is a function which is one-periodic in ξ. As for Eq. (9), one can show that

θ1 = θ1(x, t), (11)

i.e., the function θ1 does not depend on the variable ξ.
Equating terms of the order ε0 to zero in (8), with allowance for (10) and (11) we obtain

∂U(ξ, θ0(x, t))
∂t

−∆xθ0(x, t) = ∆ξθ2(x, t, ξ) + f(x, t). (12)

We introduce the average over the period:

〈g(x1, . . . , xk, t, ξ1, . . . , ξk)〉 =

1∫
0

. . .

1∫
0

g(x1, . . . , xk, t, ξ1, . . . , ξk) dξ1 . . . dξk.

We apply the averaging operator to both sides of (12)

〈∂U(ξ, θ0(x, t))
∂t

〉
− 〈∆xθ0(x, t)〉 = 〈∆ξθ2(x, t, ξ)〉+ f(x, t). (13)

Since the function θ2 is periodic in ξ, we have

〈∆ξθ2(x, t, ξ)〉 = 0, 〈∆xθ0(x, t)〉 = ∆xθ0(x, t),
〈∂U
∂t

〉
=

∂

∂t
〈U(ξ, θ0(x, t))〉.

As a result, we obtain the equation for determination of the function θ0(x, t), which it is natural to call the
averaged equation:

∂UC(θ0(x, t))
∂t

−∆xθ0(x, t) = f(x, t). (14)

Here UC(θ0(x, t)) ≡ 〈U(ξ, θ0(x, t))〉 = vAUA(θ0(x, t)) + vBUB(θ0(x, t)), where vA and vB = 1 − vA are the
volumes occupied by the substances A and B, respectively, in the unit cube Q1.

The qualitative dependence of the averaged specific internal energy UC(θ) is shown in Fig. 2 (dashed
curve). The strictly increasing function UC(θ) undergoes discontinuities of the first kind for θ = θ∗B and
θ = θ∗A; here UC(θ∗B + 0)− UC(θ∗B − 0) = vBLB > 0 and UC(θ∗A + 0)− UC(θ∗A − 0) = vALA > 0. Outside of
the points of discontinuity, UC(θ) is a smooth function. We denote the function inverse to UC(θ) by θC , i.e.,
θ = θC(UC). The function θC is a uniquely determined function.

Let the function θ0(x, t) satisfy, in terms of the distribution theory, Eq. (14) and the initial boundary
conditions

θ0(x, t) = θS(x, t), (x, t) ∈ S × (0, T ); (15)

UC

∣∣∣
t=0

= U0(x), x ∈ Ω, (16)

where U0(x) is the ∗-weak limit of the functions Uε(x) in L∞(Ω) as ε→ 0. Using the function U0(x), one can
find unambiguously the initial temperature

θ0

∣∣∣
t=0

= θC(U0(x)), x ∈ Ω. (17)
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Definition 2. The pair of functions {θ0(x, t), u0(x, t)} is called the generalized solution of problem
(14)–(16) if:

1) θ0 ∈W 1,0
2 (ΩT ) and u0(x, t) ∈ UC(θ0(x, t));

2) the boundary condition (15) is satisfied;
3) for all the functions ϕ(x, t) from W 1,1

2 (ΩT ) subject to the conditions ϕ
∣∣∣
t=T

= 0 and ϕ
∣∣∣
ST

= 0, the

integral identity ∫
ΩT

(
u0
∂ϕ

∂t
−∇θ0∇ϕ+ fϕ

)
dx dt+

∫
Ω

U0(x)ϕ(x, 0) dx = 0

is satisfied.
For convenience of the formulation of the result, we introduce the function θΓ0(x, t) which is defined

in Ω̄× [0, T ] and coincides with θS(x, t) from (15) for (x, t) ∈ ST and with θ0

∣∣∣
t=0

from (17) for t = 0.

Theorem 2. Let θΓ0(x, 0) ∈ L∞(Ω) ∩W 1
2 (Ω), θΓ0 ∈ L∞(ΩT ), DtθΓ0 ∈ W

1,1
2 (ΩT ), and f ∈ L2(ΩT ).

Then, there exists a unique limited generalized solution of problem (14)–(16):

θ0 ∈W 1,1
2 (ΩT ) ∩ L∞(0, T ;W 1

2 (Ω)) ∩ L∞(ΩT ), u0 ∈ L∞(ΩT ).

The proof of Theorem 2 is similar to that of the corresponding theorem for the generalized solution of
the Stefan problem [2, pp. 32–35].

Theorem 3. Let {θε, uε} be the solution of the ε-problem (3)–(5). Then, there is a sequence (denoted
by the subscript ε) {θε, uε} which converges to the solution {θ0, u0} of the average problem (14)–(16) as ε→ 0
in the following meaning: θε → θ0 is weak in W 1,1

2 (ΩT ) and strong in L2(ΩT ) and almost everywhere in ΩT ;
uε → u0 is ∗-weak in L∞(ΩT ).

Proving Theorem 3, we use the following lemma (its formulation and proof can be found, for example,
in [5]).

Lemma 1. Let D be a hypercube in Rk and the function g(x) ∈ Lp(D) (p > 1) be continued periodically
(in each variable) from D into Rk. Then, the functions g(x/ε) converge weakly to

〈g〉 ≡ 1
measD

∫
D

g(x) dx in Lp(D) as ε→ 0.

If p = +∞, then g(x/ε) converge ∗-weakly to 〈g〉 in L∞(D) as ε→ 0.
Proof of Theorem 3. It follows from the results of Theorem 1 that there is a sequence {θε} which

converges weakly to a certain function θ0 in W 1,1
2 (ΩT ), strongly in L2(ΩT ), and almost everywhere in ΩT as

ε→ 0.
We consider the first integral on the left side of integral identity 3 from Definition 1:

T∫
0

∫
Ω

uεϕt dx dt =

T∫
0

∫
Ω∩Aε

UA(θε(x, t))ϕt dx dt+

T∫
0

∫
Ω∩Bε

UB(θε(x, t))ϕt dx dt

=

T∫
0

∫
Ω

χAε{UA(θε(x, t))− UA(θ0(x, t))}ϕt dx dt+

T∫
0

∫
Ω

χAεUA(θ0(x, t))ϕt dx dt

+

T∫
0

∫
Ω

χBε{UB(θε(x, t))− UB(θ0(x, t))}ϕt dx dt+

T∫
0

∫
Ω

χBεUB(θ0(x, t))ϕt dx dt. (18)

Here χAε(x) and χBε(x) are characteristic functions of the sets Aε and Bε; we note that χAε(x) = χA1(x/ε)
and χBε(x) = χB1(x/ε). Since θε(x, t) → θ0(x, t) almost everywhere in ΩT , the first and third integrals on
the right side of (18) converge to zero (according to the Lebesgue theorem on the limit transition under
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the integral). The functions UA(θ0(x, t))ϕt(x, t) and UB(θ0(x, t))ϕt(x, t) in the second and fourth integrals
do not depend on ε, and they can be considered as trial functions from L1(ΩT ) (ϕt ∈ L1(ΩT ), and UA(θ0)
and UB(θ0) are limited in L∞(ΩT ) by virtue of the boundedness of θ0 in L∞(ΩT )). Then, according to
Lemma 1, χAε converge ∗-weakly to vA in L∞(Ω) as ε → 0 and χBε converge ∗-weakly to vB = 1 − vA in
L∞(Ω); this implies that as ε → 0, the second and fourth integrals on the right side of (18) converge to

vA

∫
ΩT

UA(θ0(x, t))ϕt(x, t) dx dt and vB

∫
ΩT

UB(θ0(x, t))ϕt(x, t) dx dt. Thus,

∫
ΩT

uεϕt dx dt→
∫

ΩT

u0ϕt dx dt as ε→ 0,

where u0(x, t) = vAUA(θ0(x, t)) + vBUB(θ0(x, t)).
The limit transition as ε → 0 in integral identity 3 of Definition 1 leads to integral identity 3 of

Definition 2. By virtue of the uniqueness of the solution of the average problem, the theorem is proved.
It follows from the theorem that the characteristics of the averaged problem depend on the ratio of

the volumes vA and vB of the substances A and B but do not depend on their mutual geometrical position.
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